Acta Crystallographica Section E

## Structure Reports

 OnlineISSN 1600-5368

## Jin-Hua Cai,* Yi-Min Jiang, Xiu-Jian Wang and Zhi-Min Liu

College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, Guangxi
541004, People's Republic of China

Correspondence e-mail: cjhzse@163.com

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
$R$ factor $=0.038$
$w R$ factor $=0.166$
Data-to-parameter ratio $=15.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

## $\operatorname{Bis}\left(\mu\right.$-2-aminoethanesulfonato)- $\kappa^{3} N, O: O^{\prime} ; \kappa^{3} O^{\prime}: N, O-$ bis[(bipyridine $\left.-\kappa^{2} N, N^{\prime}\right)($ perchlorato- $\left.\kappa O) \operatorname{copper}(I I)\right]$

The dimeric molecule of the hydrothermally synthesized binuclear complex $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$, a tauride complex, occupies a special position on an inversion centre. The Cu atom has a severely distorted octahedral coordination, with four short and two substantially longer bonds. The four short bonds involve two bipyridine and one taurine N atoms $\left[\mathrm{Cu}-\mathrm{N}_{\text {bipyridine }}=1.990\right.$ (3) and 2.025 (3) $\AA$, $\mathrm{Cu}-\mathrm{N}_{\text {taurine }}=1.992$ (3) $\AA$ ] as well as one of the taurine O atoms $[\mathrm{Cu}-\mathrm{O}=1.964$ (3) $\AA$ ]. The second taurine O atom belonging to the second bridging molecule forms a much longer $\mathrm{Cu}-\mathrm{O}$ bond [2.363 (4) A], and the perchlorate O atom participates in the longest $\mathrm{Cu}-\mathrm{O}$ bond [2.675 (3) $\AA$ ]. The molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds into infinite chains running along the $a$ axis of the crystal structure.

## Comment

Copper is especially important in the nervous system of higher eukaryotes, appearing in proteins responsible for the biogenesis of both catecholamine and peptidic hormones (Kinman, 1996). Metal $\beta$-alaninesulfonates, also known as taurides, are of substantial interest because of their applications in medicine and biochemistry (Bottari \& Festa, 1996; Bottari \& Festa, 1998).

The title compound, (I), is a copper complex with two metal atoms bridged by two chelate bridging tauride ligands (Fig. 1). The molecule of the complex occupies a special position on a crystallographic inversion centre, which coincides with the centre of the eight-membered $\mathrm{Cu}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ ring formed by the atoms of two bridging ligands and the Cu atoms; the distance between the two Cu atoms is 4.868 (12) $\AA$. A similar eightmembered cycle was reported earlier in the copper complex $\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NSO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NSO}_{4}=\right.$ taurine salicylic Schiff base; Jiang \& Zhang, 2003).

(I)

Atom Cu 1 has a distorted octahedral coordination, formed by atom O 4 of the perchlorate anion, atoms N 1 and N 2 of the

Received 1 September 2004
Accepted 11 October 2004
Online 22 October 2004


Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the $50 \%$ probability level; H atoms have been omitted. Unlabelled atoms are related to labelled atoms by $-x, 1-y, 1-z$.

Figure 2


A fragment of the crystal structure of (I), showing a polymeric hydrogenbonded chain (dashed lines) of Cu complexes running along the $a$ axis.

In the structure of the title compound there are two symmetry-independent 'active' H atoms; both of them belong to the $\mathrm{NH}_{2}$ group of the tauride ligand (at atom N3). Atom H 2 N 3 forms an intramolecular hydrogen bond with sulfonate atom O7. Atom H1N3 participates in an intermolecular hydrogen bond with atom $\mathrm{O1}^{\mathrm{ii}}$ [symmetry code (ii): $x+1, y, z$ ]. The latter hydrogen bond is responsible for the formation of infinite chains of molecules of the complex running along the $a$ axis of the crystal structure (Fig. 2 and Table 2).

## Experimental

A solution of taurine $(1.0 \mathrm{mmol})$ and $\mathrm{NaOH}(1.0 \mathrm{mmol})$ in anhydrous methanol ( 10 ml ) was added slowly to a solution of $\mathrm{CuClO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ( 1.0 mmol ) in anhydrous methanol $(10 \mathrm{ml})$. After stirring for 10 min , bipyridine ( 1.0 mmol ), dissolved in methanol ( 5 ml ) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$, was added slowly to the mixture. It was then dropped into a 25 ml Teflon-lined stainless steel reactor and heated at 383 K for four days. Thereafter, the reactor was slowly cooled to room temperature and blue prism-shaped crystals suitable for X-ray diffraction were collected.

## Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}\left(\mathrm{ClO}_{4}\right)_{2}-\right.$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=886.65$
Monoclinic, $P 2_{1} / c$
$a=6.741$ (3) A
$b=15.58$ (3) $\AA$
$c=15.126$ (6) Å
$\beta=91.401$ (12) ${ }^{\circ}$
$V=1588$ (3) $\AA^{3}$
$Z=2$

## Data collection

Siemens $P 4$ diffractometer $\omega$ scans
Absorption correction: multi-scan
(XPREP in SHELXTL;
Siemens, 1994)
$T_{\text {min }}=0.814, T_{\text {max }}=0.918$
12077 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.166$
$S=1.13$
3601 reflections
226 parameters
$D_{x}=1.855 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 105 reflections
$\theta=1.9-27.5^{\circ}$
$\mu=1.72 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, blue
$0.34 \times 0.10 \times 0.05 \mathrm{~mm}$

3601 independent reflections
3102 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-7 \rightarrow 8$
$k=-20 \rightarrow 20$
$l=-19 \rightarrow 19$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1151 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.78$ e $\AA^{-3}$
$\Delta \rho_{\min }=-0.86 \mathrm{e} \AA^{-3}$
chelate $2,2^{\prime}$-bipyridine ligand and atoms O3 and N 3 of one of the bridging taurides, as well as atom $\mathrm{O} 2^{\mathrm{i}}$ [symmetry code: (i) $-x, 1-y, 1-z]$ of the second bridging tauride ligand. The Cu 1 coordination shows a typical tetragonal distortion, with four short 'equatorial' coordination bonds involving both N atoms of the bipyridine ligand [Cu1-N1 = 1.990 (3) $\AA$ and $\mathrm{Cu} 1-\mathrm{N} 2=2.025(3) \AA]$ and the chelating $\mathrm{Cu} 1-\mathrm{N} 3$ [1.992 (3) $\AA$ ] and Cu1-O3 [1.964 (3) Å] bonds with one of the bridging taurides. The 'axial' $\mathrm{Cu} 1-\mathrm{O} 2{ }^{\mathrm{i}}$ and $\mathrm{Cu} 1-\mathrm{O} 4$ bonds involving the second bridging tauride and the perchlorate ligand, respectively, are considerably longer [2.363 (3) and 2.675 (3) $\AA$ ]; the $\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$ angle formed by the long 'axial' bonds is $175.97(12)^{\circ}$.

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| $\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$ | $2.363(3)$ | $\mathrm{Cu} 1-\mathrm{N} 1$ | $1.990(3)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{Cu} 1-\mathrm{O} 3$ | $1.964(3)$ | $\mathrm{Cu} 1-\mathrm{N} 2$ | $2.025(3)$ |
| $\mathrm{Cu} 1-\mathrm{O} 4$ | $2.675(3)$ | $\mathrm{Cu} 1-\mathrm{N} 3$ | $1.992(3)$ |
|  |  |  |  |
| $\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 1$ | $88.58(12)$ | $\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$ | $98.37(12)$ |
| $\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 3$ | $93.95(12)$ | $\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$ | $175.97(12)$ |
| $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$ | $175.65(12)$ | $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$ | $93.45(12)$ |
| $\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 2$ | $169.53(12)$ | $\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$ | $89.69(13)$ |
| $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$ | $81.21(13)$ | $\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$ | $84.68(12)$ |
| $\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 2$ | $96.09(13)$ |  |  |

Symmetry code: (i) $-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry ( $\mathrm{A},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| N3-H1N3 $\cdots \mathrm{O}^{\text {ii }}$ | 0.90 | 2.15 | $2.872(7)$ | 137 |
| N3-H2N3 $\cdots$ O7 | 0.90 | 2.16 | $3.009(7)$ | 157 |

Symmetry code: (ii) $1+x, y, z$.

H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.90 \AA$ ) and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular
graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of the Guangxi Chuang Autonomous Region of the People's Republic of China (grant No. 0339034) and the Science Research Foundation of Guangxi Universities of the People's Republic of China.

## References

Bottari, E. \& Festa, M. R. (1996). Langmuir, 12, 1777-1786.
Bottari, E. \& Festa, M. R. (1998). Talanta, 46, 91-99.
Jiang, Y. M. \& Zhang, S. H. (2003). Acta Chim. Sin. 64, 573-577.
Kinman, J. P. (1996). Chem. Rev. 96, 2541-2580.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). XSCANS (Version 2.10b) and SHELXTL (Version 5.10). Siemens Analytical X-ray instruments Inc., Madison, Wisconsin, USA.

